חAMIIBIA UПIVERSITY
OF SCIEПCE AПD TECHПOLOGY
FACULTY OF ENGINEERING AND SPATIAL SCIENCES

DEPARTMENT OF ARCITECTURE AND SPATIAL SCIENCES

QUALIFICATIONS:					
BACHELOR OF GEOMATICS and DIPLOMA IN GEOMATICS		$	$	QUALIFICATIONS CODES: 07BGEO, 06DGEO	QUALIFICATION LEVEL: Level - 07BGEO Level - 06DGEO
:---	:---				
COURSE CODE: BSV521	COURSE NAME: Basic Surveying				
DATE: July 2022	PAPER: THEORY				
DURATION: 3 HOURS	MARKS: 100				

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER	
EXAMINER:	Mr F. J. Louw
MODERATOR:	Mr S. Sinvula

INSTRUCTIONS

1. You MUST answer ALL QUESTIONS
2. Write clearly and neatly.
3. Number the answers clearly.
4. Make sure your Student Number is on the EXAMINATION BOOK(s).
5. MAKE SURE YOUR STUDENT NUMBER IS ON ALL THE DATA SHEETS AND THAT YOU SUBMIT THEM WITH YOUR EXAMINATION BOOK(S).

PERMISSIBLE MATERIALS

1. Calculator, ruler, pencil and eraser.

THIS QUESTION PAPER CONSISTS OF 6 PAGES (Including this front page and 2 Data Sheets)

Question 1

1.1. Distinguish between Precise Observations and Accurate Observations.
1.2. Distinguish between the terms Grid and Graticule.
1.3. Why should intermediate sights onto important points be avoided during levelling?
1.4. Briefly describe ANY FOUR characteristics of Contours.
1.5. What are the purposes of a Reference Object (R / O) ?
1.6. Name the THREE requirements of a Reference $\operatorname{Object}(R / O)$.
1.7. There are two principal classifications of surveying, name ANY ONE and fully explain it.
1.8. Briefly explain how a surveyor would take a level reading under a bridge. What is this method called?

Question 2

You are appointed to subdivide an Erf in Windhoek North. You found two working stations from previous surveys done by another land surveyor, but you are not able to set-up your instrument any one of them. Use the information below to calculate co-ordinates for Rev1.

Please note:

- The Atmospheric Correction and the Conversion to German Legal Metre is already applied to all measured distances
- You have to calculate a DOUBLE REVERSE POLAR.
- Use the following combination: Hohe Win and WP1, and Nubuamis and WP2

Combined Sea level \& Scale Enlargement Factor $=1+\left[\left(y^{2} /\left(2 R^{2}\right)-H / R\right)\right]$, where $R=6370 \mathrm{~km}$ and $H=1700.000 \mathrm{~m}$

Co-ordinates

Point

Y

x

Hohe Win
$-11071.260+64410.770$
Nubuamis $\quad-5533.620+53318.300$
WP1 - $7751.067+60651.665$
WP2 $-7863.582+60667.863$
@Rev1 $\mathrm{HI}=1.580 \mathrm{~m}$

Point	Mean. Observ. Hor. Direction	Slope Distance	Zenith Angle
Hohe Win	$319^{\circ} 05^{\prime} 01^{\prime \prime}$		$87^{\circ} 19^{\prime} 15^{\prime \prime}$
WP1	$65^{\circ} 47^{\prime} 16^{\prime \prime}$	49.117	$87^{\circ} 42^{\prime} 17^{\prime \prime}$
Nubuamis	$162^{\circ} 48^{\prime} 38^{\prime \prime}$		$88^{\circ} 59^{\prime} 21^{\prime \prime}$
WP2	$298^{\circ} 13^{\prime} 06^{\prime \prime}$	76.877	$89^{\circ} 44^{\prime} 12^{\prime \prime}$
RO	$319^{\circ} 05^{\prime} 13^{\prime \prime}$		$87^{\circ} 19^{\prime} 01^{\prime \prime}$

Question 3

3.1. Calculate oriented directions for the traverse by completing the direction sheet on Data Sheet 1. Use the said Data Sheet for all your calculations. Please detach the Data Sheet and submit with your examination book.
3.2. Calculate the final co-ordinates for the traverse points on Data Sheet 2. Use the said Data Sheet for all your calculations. Use the Bowditch Rule to adjust the traverse. Please note that the directions are oriented, and the distances are final. Please detach the Data Sheet and submit with your examination book.

Question 4

Use the information and observations below to calculate the co-ordinates for the point RES, by using the
Q-point method for a resection calculation.

Co-ordinate List.

Name	Y	X
\triangle MOUNT	+ 33252.460	+ 182505.030
\triangle SPOON	+53689.320	+203390.460
\triangle VALLEY	+ 27619.400	+ 194045.970
@ RES	Height of Instrumen	853
Name	Fin. Observed	
\triangle VALLEY	$290^{\circ} 00{ }^{\prime \prime}$	
\triangle SPOON	$66^{\circ} 08^{\prime} 37^{\prime \prime}$	
\triangle MOUNT	$177^{\circ} 03^{\prime} 12^{\prime \prime}$	Long Leg

Question 5

Use the information below to answer the questions that follow.
Co-ordinates

Name	\mathbf{Y}	\mathbf{X}	Description
Δ Blau	+37054.410	+228354.540	Standard Concrete Pillar
Kalk	+43991.910	+219483.720	Iron Standard
Morn	+43786.880	+222042.600	20 mm Iron Peg

@ Kalk	Height of Instrument $=1.655 \mathrm{~m}$
Name	Final Observed Direction
Δ Blau	$315^{\circ} 58^{\prime} 15^{\prime \prime}$
Morn	$355^{\circ} 25^{\prime} 03^{\prime \prime}$
MAST	$70^{\circ} 54{ }^{\prime \prime}$

@ Morn		Height of Instrument $=1.685 \mathrm{~m}$
Name		Final Observed Direction
\triangle Blau		$313^{\circ} 09^{\prime} 15^{\prime \prime}$
MAST	$109^{\circ} 43^{\prime} 13^{\prime \prime}$	
Kalk	$175^{\circ} 25^{\prime} 12^{\prime \prime}$	

5.1. Use the above observations and information to calculate orientated directions at Kalk and Morn.
5.2. Calculate the MEAN co-ordinates of point MAST.

Student Number \qquad

Question 3.1.
Direction Sheet

1	2	3	4	5	6	7
Station	Final Observed Direction	Incoming/ Back Direction	Prov. Correction	Outgoing/ Forward Direction	Final Correction	Join Direction / Final Oriented Direction
@ Resec						
Δ Ounois	$200^{\circ} 13^{\prime} 57{ }^{\prime \prime}$					200 ${ }^{\circ} 13^{\prime} 46^{\prime \prime}$
\triangle Snake	$2^{\circ} 28^{\prime} 16^{\prime \prime}$					$2^{\circ} 28^{\prime} 01^{\prime \prime}$
Tr1	$109^{\circ} 49^{\prime} 33^{\prime \prime}$					
@Tr1						
Resec	$289{ }^{\circ} 49^{\prime} 15^{\prime \prime}$					
Tr2	$107^{\circ} 46^{\prime} 58^{\prime \prime}$					
@Tr2						
Tr1	$287^{\circ} 46^{\prime} 43^{\prime \prime}$					
RP	$127^{\circ} 31^{\prime} 23^{\prime \prime}$					
@RP						
Δ Triumph	$55^{\circ} 31^{\prime} 12^{\prime \prime}$					$55^{\circ} 31^{\prime} 20^{\prime \prime}$
\triangle Sieg	$152^{\circ} 44^{\prime} 55^{\prime \prime}$					$152^{\circ} 45^{\prime} 05^{\prime \prime}$
Tr 1	$307^{\circ} 31^{\prime} 30 \prime$					

\qquad Data Sheet 2

Question 3.2.

Bowditch Rule - Adjustment Sheet

Note: All answers must be rounded off to 3 decimal places

DIRECTION \& DISTANCE	$\begin{aligned} & \text { n } \\ & \\ & \end{aligned}$	DIFFERENCES		STATION	FINAL	COORDINATES
		$\Delta \mathrm{Y}$	$\Delta \mathrm{X}$		Y	X
				A	-2228.357	+ 56477.839
$278^{\circ} 51^{\prime} 12^{\prime \prime}$						
714.917 m						
				B		
$279^{\circ} 49^{\prime} 43^{\prime \prime}$						
652.269m						
				C		
$283^{\circ} 58^{\prime} 31{ }^{\prime \prime}$						
738.093m						
				D	-4293.734	+ 56877.519

